This document describes how to use rOceans for accessing future trends in environmental drivers and link them to hotspots of species diversity in the marine realm Here we show an example for sharks of family Carcharhinidae.
Download rOceans from GitHub and load the package
devtools::install_github("monteroserra/rOceans") library(rOceans)
First, we need to access the data and compute species diversity
For simplicity, we provide the dataset "Carcharhinidae_total_checked" which is the output obtained using oceanDataCheck() applied to raw datasets from OBIS and GBIF (see vignette 1 with Acropora example for more details on checking and filtering raw data)
data(Carcharhinidae_total_checked) Carcharhinidae_diversity = oceanDiversity(occurrences = Carcharhinidae_total_checked, print=F)
sharks_hotspots = rOceans::oceanHotspots(biodiversity_grid = Carcharhinidae_diversity[[3]], map_hotspots =T)
Accessing and computing future warming trends using oceanFuture()
SST_2100_RCP8.5 = oceanFuture(IPCC_scenario = "RCP85") SST_2100_RCP4.5 = oceanFuture(IPCC_scenario = "RCP45") SST_2100_RCP2.5 = oceanFuture(IPCC_scenario = "RCP26")
Accessing other environemntal drivers: maximum chlorophile concentration
Surface_Salinity_max_2100_RCP8.5 = oceanFuture( env_parameter = "BO2_salinitymax_ss")
Linking them to biodiversity hotspots to explore future vulnerability
oceanVulnerab(biodiversity_grid = sharks_hotspots, plot_histograms = T)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.